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Abstract—Many data-intensive services (e.g., planet analysis, gene analysis, etc.) are becoming increasingly reliant on 

national cloud data centers because of growing scientific collaboration among countries. In national cloud data centers, tens of 

thousands of virtual machines are assigned to physical servers to provide data-intensive services with a quality-of-service (QoS) 

guarantee, and consume a massive amount of energy in the process. Although many virtual machine placement schemes have 

been proposed to solve this problem of energy consumption, most of these assume that all the physical servers are 

homogeneous. However, the physical server configurations of national cloud data centers often differ significantly, which leads 

to varying energy consumption characteristics. In this paper, we explore an alternative virtual machine placement approach to 

minimize energy consumption during the provision of data-intensive services with a global QoS guarantee in national cloud data 

centers. We use an improved particle swarm optimization (PSO) algorithm to develop an optimal virtual machine placement 

approach involving a tradeoff between energy consumption and global QoS guarantee for data-intensive services. Experimental 

results based on an extended version of the CloudSim framework show that our approach significantly outperforms other 

approaches to energy optimization and global QoS guarantee in national cloud data centers. 

Index Terms—cloud computing; data-intensive service; national cloud data center; virtual machine placement; energy 

consumption; QoS 

———————————————————— 

1 INTRODUCTION 

ith the increasing popularity of cloud computing in 
recent times, many countries and organizations 

have begun building national cloud data centers (NCDCs) 
to support collaboration in scientific research [1,2]. 
These are exemplified by the Galileo project1, A Toroidal 
LHC Apparatus experiment2, and the Coordination Group 
for Meteorological Satellites3. NCDCs are different from 
public cloud data centers, which focus on processing 
public and non-profit service requirements. In general, 
these service requirements are related to big data and 
the processing of large tasks, i.e., data-intensive services 
(e.g., large scale traffic data analysis). For example, five 
NCDCs in China are primarily dedicated to providing da-
ta-intensive services for public service departments (e.g., 
Meteorology, Resources, Health, and Traffic) and interna-
tional collaboration in research.  

NCDCs are different from public cloud data centers, 
which do not provide services to consumers in business 
scenarios. NCDCs provide scalable storage and compu-
ting resources for public and non-profit service require-
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ments based on non-profit modes of operation. These 
scalable resources can be dynamically organized as virtu-
al machines (VMs) to run data-intensive services / appli-
cations. The required resources of a VM are sliced from a 
physical server in the NCDC. A physical server (called 
“server,” for short) may contain one or more VMs. When 
a NCDC needs to create a large number of VMs to satisfy 
data-intensive service requirements, a primary concern is 
the VM placement problem [3]. Furthermore, with an 
increasing amount of large-scale, international collabora-
tive research incorporating data-intensive services for its 
purposes, energy consumption has become a crucial fac-
tor for the VM placement problem in NCDCs. 

With the increasing number and size of physical serv-
ers in data centers, energy consumption imposes a signif-
icant operational cost. Currently, datacenters that power 
Internet-scale applications consume approximately 1.3% 
of the worldwide electricity supply, and this fraction is 
expected to grow to 8% by 2020 [4,5]. Datacenter carbon 
emissions were 0.6% of the global total, nearly equal to 
that of the Netherlands, and the fraction is expected to 
reach 2.6%, which exceeds the carbon emission of Ger-
many by 2020 [5]. Hence, in order to make good use of 
NCDCs, energy conservation and carbon emission reduc-
tion form a major part of the strategies of governments 
the world over. Building a NCDC management mecha-
nism for energy conservation and emissions reduction 
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has thus become a vital task. 
To reduce energy consumption, server consolidation 

technology using virtualization is introduced in data cen-
ters. This technology can consolidate multiple applica-
tions on the same physical server, with each application 
typically running on its own virtual machines (VMs) [6]. 
In return, these VMs are mapped to physical servers. In 
the context of virtualized data centers (e.g., cloud data 
centers), it is a critical concern to design energy-efficient 
VM placement approaches that reduce energy consump-
tion while satisfying quality of services (QoS) (e.g., re-
sponse time, reliability, and throughput) of services / 
applications. Then, using the above technology as a 
foundation, some notable work [7-9] has been devoted 
to reduce the energy consumption of cloud datacenters. 
Although these energy-aware VM placement approaches 
can significantly achieve energy conservation and emis-
sions reduction of cloud datacenters, they are low effi-
cient for NCDCs by some of the following factors: 
 Most current studies have assumed that the 

physical servers of a cloud data center are homo-
geneous. While this assumption appears reason-
able at first blush, it is unreasonable in environ-
ments involving NCDCs because a variety of new 
servers are typically added to a NCDC to run new 
data-intensive services or satisfy novel demands 
in processing NCDC operations. Thus, they form a 
heterogeneous cloud data center environment. 
In a NCDC, server configurations often differ (the 
hardware configuration of NCDCs can differ sig-
nificantly in terms of the CPU core count, 
memory, hard disk, and other components), 
which leads to varying server energy consump-
tion characteristics. This implies that the mini-
mum number of active servers may not consume 
the least amount of energy. Thus, approaches to 
energy conservation focusing on operating a min-
imum number of servers, which constitute most 
research on the issue, may not be able to achieve 
the best energy-saving effect. Therefore, these 
approaches are not applicable to NCDC environ-
ments involving a large number of heterogene-
ous servers.  

 A data-intensive service consists of functional as 
well as non-functional attributes (e.g., QoS). The 
functional attributes of services are typically fixed 
through workflow management, but the QoS of-
ten changes because of dynamic network envi-
ronments. Although the arrival rate of data-
intensive service requirements is stable (in con-
trast to cloud data centers) due to the absence of 
commercial operations, the QoS of NCDC services 
often fluctuates. Hence, excellent data-intensive 
service provision systems not only satisfy the 

functional attribute requirements of the service, 
but also guarantee its QoS. Hence, QoS also plays 
an important role in determining the success 
or failure of service provision. However, tradi-
tional energy-aware VM placement schemes 
mainly focus on energy conservation to minimize 
the number of servers, and rarely consider the 
global QoS guarantee of data-intensive services. 
For example, some data-intensive services de-
mand quick response times whereas others need 
high throughput. The global QoS guarantee thus 
relies on the aggregation of QoS requirements of 
all data-intensive service. From the perspective 
of NCDCs, if the VMs cannot provide a computing 
environments that satisfies the global QoS guar-
antee in order to fulfill a given service level 
agreement (SLA), this poses a serious hindrance 
to international collaboration in scientific re-
search. In such a scenario, the relevant NCDC will 
not pay penalties for violating the relevant SLA, 
and the SLA violation of one or more data-
intensive services is tolerable when satisfying the 
global QoS guarantee of all data-intensive ser-
vices. Hence, finding the best VM placement so-
lution with a global QoS guarantee becomes a 
crucial issue for NCDCs. 

In this paper, based on our previous work [17], we 
propose an energy- and QoS-aware VM placement ap-
proach that NCDCs can use to support data-intensive 
services for international collaborative scientific research. 
Our contributions in this paper are as follows: 

1) In contrast to past research in the area, our study 
eliminates the assumption of server homogeneity, 
adds a global QoS guarantee, and considers the 
VM placement optimization problem as a 
tradeoff between energy consumption and global 
QoS guarantee in NCDCs.  

2) We present an energy-and QoS-aware VM 
placement optimization approach based on par-
ticle swarm optimization (PSO). To effectively 
solve the VM placement optimization problem, 
we improve PSO by redefining its parameters and 
operators. We then propose a local fitness-first 
strategy to update particle position. Moreover, 
we design a novel two-dimensional (2D) particle 
encoding scheme. Finally, we use the improved 
PSO to find the optimal virtual machine place-
ment.  

3) To evaluate our approach, we extend CloudSim4, 
a well-known cloud simulator, to a new simulator 
called FTCloudSim by adding fat-tree data center 
network construction module, a QoS module, 

 

4http://www.cloudbus.org/cloudsim/ 



A. ZHOU ET AL.:  ON CLOUD SERVICE RELIABILITY ENHANCEMENT WITH OPTIMAL RESOURCE USAGE 3 

 

and so on. We implement all approaches in 
FTCloudSim, and compare our approach with 
others in terms of energy consumption and glob-
al QoS guarantee. Experimental results show that 
our proposed approach can reduce energy con-
sumption while still satisfying the global QoS 
guarantee. 

The remainder of this paper is organized as follows: 
Section 2 introduces related work in the area. In Section 
3, we develop our energy consumption model and design 
QoS utility functions. Our proposed energy- and QoS-
aware virtual machine placement optimization method is 
detailed in Section 4. Experiments to compare our pro-
posal against prevalent methods are described in Section 
5. We offer our conclusions as well as an outlook on fu-
ture work in the area in Section 6. 

2. RELATED WORK 

A number of schemes have been proposed for effi-
cient VM placement in cloud data centers. 

From the perspective of energy-aware VM placement, 
C. Tang et al. [7] investigated the application workload 
placement optimization problem in the context of an 
enterprise data center. They presented an online applica-
tion placement approach to minimize the number of ap-
plication starts and stops. They maximized the total satis-
fied application demand, and balanced the load across 
machines. V. Petrucci et al. [8] modeled the energy opti-
mization of cloud data centers as a mixed integer pro-
gramming problem, and obtained an exact solution using 
the CPLEX solver optimization software package. D. Kusic 
et al. [9] modeled the energy consumption optimization 
of a virtualized data center as a sequential optimization 
problem, and proposed an energy optimization algorithm 
based on control theory. K. Le et al. [10] studied the pos-
sibility of lowering electricity costs for cloud providers 
operating multiple geographically distributed data cen-
ters, and designed policies that intelligently place and 
migrate load across the data centers to take advantage of 
time-based differences in electricity prices and tempera-
tures. L. Wang et al. [11] developed scheduling heuristics 
to reduce energy consumption of a tasks execution and 
discusses the relationship between energy consumption 
and task execution time by increasing task execution 
time within an affordable limit. X. Jing and J. A. B. Fortes 
[12] modeled the VM placement problem as a multi-
objective optimization problem of simultaneously mini-
mizing total resource wastage, power consumption, and 
thermal dissipation costs, and used an improved genetic 
algorithm with fuzzy multi-objective evaluation to search 
through a large solution space. Although these energy-
aware virtual machine placement approaches can signifi-
cantly reduce the energy consumption of cloud data cen-
ters, they are inefficient in NCDCs because the physical 

servers are heterogeneous. Moreover, these schemes 
cannot provide the QoS guarantee for VMs, and distort 
the global QoS guarantee of data-intensive services in 
NCDCs. 

From the perspective of energy- and QoS-aware VM 
placement, W. Shao-Heng et al. [13] investigated a 
method to integrate QoS awareness with energy saving 
in VM placement, i.e., in addition to fully exploiting the 
resources of servers, they considered the QoS require-
ments of user applications. This scheme combined three 
key techniques: (1) hop reduction, (2) energy saving, and 
(3) load balancing. Hop reduction was used to regroup 
VMs to lower the traffic load among them. Energy saving 
technique was adopted to choose the appropriate serv-
ers. The proposed load balancing was employed to peri-
odically update VM placement. Goudarzi and Pedram  
[14] generated multiple copies of VMs without sacrificing 
QoS, proposed an algorithm based on dynamic pro-
gramming and local search to determine the number of 
VM copies, and placed them on servers to minimize the 
total energy cost in cloud computing systems. Beloglazov 
and Buyya [15,16] defined the problem of minimizing 
energy consumption while meeting QoS requirements, 
stated requirements for VM allocation policies, and 
found the best solution in three stages: reallocation ac-
cording to the utilization of multiple system resources at 
any given time, optimization of virtual network topolo-
gies established between VMs, and VM reallocation con-
sidering the thermal states of the resources. Their pro-
posed energy-efficient resource allocation policies and 
scheduling algorithms consider QoS expectations and the 
power usage characteristics of devices. Although these 
energy- and QoS-aware VM placement approaches can 
reduce the energy consumption of cloud data centers 
with QoS guarantee, the QoS guarantees of these 
schemes are only local guarantees, and they cannot sat-
isfy the global QoS guarantee of data-intensive services 
in NCDCs. Moreover, the QoS guarantee of these 
schemes involves avoiding SLA violations. However, For 
NCDCs, SLA violations of one or more data-intensive ser-
vices is tolerable when satisfying the global QoS guaran-
tee of all data-intensive services. 

In contrast to existing schemes, which exhibit poor 
performance due to heterogeneous physical servers and 
the global QoS guarantee in NCDCs, our approach can 
minimize energy consumption while satisfying the global 
QoS guarantee by employing an improved PSO. Our ap-
proach can find the best VM placement scheme because 
it does not rely on enumerating all possible combinations 
of physical servers. Moreover, it can satisfy the global 
QoS guarantee by maximizing the overall QoS utility 
function, whereas existing schemes cannot support this 
crucial case. 
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3. ENERGY AND QOS COMPUTATION 

Note that the notations in Table I will be used 
throughout the paper. 

TABLE I.  NOTATIONS 

Symbol Meaning 

psi the i-th physical machine in the data center, i= 1, 2, … 

vmi the j-th virtual machine in the data center, j= 1, 2, … 

wk the weight of the k-th QoS attribute 

S a service 

j,

max

kQ  the maximum value of the  attribute in the j-th server 

,

min

j kQ  the minimum value of the  attribute in the j-th server 

qj(S) the j-th attribute value in service 

cpu

ir  the maximum CPU and memory requirements of the i-
th virtual machine 

mem

ir  the maximum CPU and memory requirements of the i-
th virtual machine 

cpu

jc  the CPU and memory resource capacities of the j-th 
server 

mem

jc  the CPU and memory resource capacities of the j-th 
server 

( )iju t  the CPU utilization of the i-th VM running on the j-th 
server 

t

iX  Anbit vector that represents a feasible VM placement 
solution 

( )u t  the varying CPU utilization 

( ( ))P u t  the energy consumption of the server at time t 

maxP  the maximum energy consumed by a server that is fully 
utilized 

f local energy fitness 

En the overall energy consumption of the server in a period 

3.1 Energy Consumption Model 

It is well-known that the energy consumption of serv-
ers relies on the comprehensive utilization of a CPU, 
memory, disk, and network card. Of these factors, the 
CPU is the most important energy consumption compo-
nent. Hence, the CPU utilization of a server usually rep-
resents its resource utilization [17,18]. CPU utilization 
can be modeled as a function of time according to work-
load variability, and the energy model of the server can 
then be established based on CPU utilization. Based on 
past work [16,18-20], we introduce an energy consump-
tion model of a server in NCDCs as follows: 

2

1

( ( ))
t

t
En P u t dt  ，                                        (1) 

with 
( ( )) (1 ) ( )max maxP u t c P c P u t      ， 

where En  is the overall energy consumption of the serv-
er in the period 1 2[ , ]t t , ( )u t  ( ( ) [0,1]u t  ) is the varying 

CPU utilization, the CPU utilization can be obtained by 
monitoring the server, ( ( ))P u t  is the energy consump-

tion of the server at time t, maxP  is the maximum energy 

consumed by a server that is fully utilized, and c  is the 
fraction of energy consumed by the server when idle.  

3.2 QoS Utility Function 

It is well-known that the QoS requirement of a data-
intensive service (called service, for short) contains many 
attributes, such as response time, reliability, throughput, 
delay, availability, and so on. In general, these attributes 
can be divided into two categories: positive and negative 
QoS attributes. Positive QoS attributes (e.g., reliability, 
availability, etc.) imply that the larger the attribute value, 
the better the performance of the server running rele-
vant service. Conversely, negative QoS attributes (e.g., 
response time, delay, etc.) ought to be as low in value as 
possible. In this paper, we only consider negative QoS 
attributes (positive attribute values can be easily con-
verted into negative attribute values, i.e., by multiplying 
by -1). 

Consider a QoS requirement for service s with r at-
tributes with attribute vector 1 2{ ( ), ( ),..., ( )}rqs q s q s q s , 

where the value of ( )kq s (1 )k r 
 represents the k-th 

attribute value in service s . Similarly, the attribute vec-
tors of all l services can be expressed as 

1 2{ ( ), ( ),..., ( )}rQS q S q S q S  (  1, mS s s ), where the 

value of ( )kq S  is aggregated by the -thk attribute values 

from all services, as shown in Table II. Table II lists the 
QoS aggregation functions of services.  

TABLE II.  QOS AGGREGATION FUNCTIONS 

QoS Attributes Functions 

    Response time 1( ) max ( )l

i iq S q s  

Throughput 
1

(S) ( )
l

i

i

q q s


  

Availability, Reliability 1(S) min ( )l

i iq q s  

 
Each service involves multiple QoS attributes leading 

to different units or scope, which is not helpful in satisfy-
ing the global QoS guarantee. Therefore, we need to de-
sign a QoS utility function to map the vector of QoS val-
ues qs  into a single real value. Moreover, in this paper, 

we consider a NCDC composed of n  servers

1 2{ps ,ps ,...,ps }nPS  hosting a set of m  VMs

1 2{vm ,vm ,..., vm }mVM  . A service is often implemented 

as a VM deployed to a server while satisfying its specified 
resource (i.e., CPU and memory) and QoS constraints. 
Each VM runs one service as a time-varying workload 
( m l ). A service runs only on a VM. The QoS of the ser-
vice is then usually associated with VM provision. Hence, 
our QoS utility function scales all attribute values to the 
domain [0, 1] for uniform computation on multi-
dimensional QoS attributes depending on the servers, as 
shown in Definition 1. 

Definition 1 (QoS Utility Function): Suppose there are 
r  QoS attributions. The QoS utility functions for the i-th  
service (1 )is S i l     running the VM of the j-th server 
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ps j
 ( (1 )j n  ) and all  services S are defined as follows: 

j,k

1 j,k j,k

( )
( )= .

maxr
k i

i kmax min
k

Q q s
U s

Q Q







 ，                                        (2) 

   1

( )
( )= .

maxr
k k

kmax min
k k k

Q q S
U S

Q Q







 ，

                                        
(3) 

with   

,k ,k

1

min min min

j,k j,k

1

= = ( )

= = min ( )

i j

i j

r
max max max

k j j k i
s ps

k

r

k k i
s ps

k

Q Q Q max q s

Q Q Q q s

 


 













（ ）

，

（ ）

                        (4) 

where 
1

( 1)
r

k k

k

w R w



 
 
represents the weight of each 

QoS attribute, the users can adjust the weights based on 

their own needs, j,

max

kQ  is the maximum value of the -thk

attribute in the j-th server and ,

min

j kQ is its minimum value,

max

kQ  is the summation of each j,

max

kQ in all servers and, 

similarly, min

kQ is the summation of each j,

min

kQ . 

3.3 Energy- and QoS-aware VM Placement Model 

The optimization objective of VM placement is to min-
imize total energy consumption while satisfying the 
global QoS guarantee. If the requested maximum re-
sources of the virtual machine are allocated, the cloud 
service can run satisfactorily on this virtual machine [19]. 
By rewriting Eqs. (1) and (2), energy- and QoS-aware VM 
placement in a NCDC can be formulated as a multi-
objective constraint optimization problem, i.e., a minimi-
zation problem of the overall energy consumption with a 
maximization problem of the overall QoS utility function 
(i.e., global QoS guarantee), given by 

1
1

Min
n

m

j iji
j

E x




 ，                          (5) 

max

1 1

max min
1

( )

Max .

n m

k ij k ir
j i

k

k k k

Q x q s

w
Q Q

 



 




                  (6) 

subject to the QoS constraints and resource capacities satis-
fying the allocation constraints on the decision, as 

1 1

( ) ,1
n m

k i ij k

j i

q s x C k r
 

    ，                        (7)
 

1

m cpu cpu

i ij ji
r x c


 ，                                           (8) 

1

m mem mem

i ij ji
r x c


 ，

                                          
(9) 

1
1, 1,2,..., ,

n

ijj
x i m


                                 (10) 

where n  is the number of servers in the NCDC, m is the 
number of virtual machines, 

jE  is the total energy con-

sumption of the j-th server, cpu

ir  and mem

ir are the maxi-

mum CPU and memory requirements of the i-th virtual 

machine, respectively, and cpu

jc  and mem

jc are the CPU and 

memory resource capacities of the j-th server, respec-
tively. kC is the QoS constraint value, and (S)k kC q . 

Eq. (7) states that the QoS aggregation value of all 
services must be less than the constraint value, Eqs. (8) 
and (9) state that the sum of the resource requirements 
of VMs must be less than the relevant server's resource 
capacity, and Eq. (10) shows that a VM can only be 
placed on one server such that 

ijx =1 if the i-th VM is run 

on the j-th server, and 
ijx =0 otherwise. Note that due to 

the heterogeneity of NCDCs, the cpu

jc  of the j-th server is 

not equal to the cpu

kc  of the k-th server, and the mem

jc  of 

the j-th server is not equal to the mem

kc  of the k-th server.   

From Eqs. (5-10), we find that the energy- and QoS-
aware VM placement is an NP-hard problem. The prob-
lem of finding the best VM placement is considered an 
optimization problem where the overall energy con-
sumption must be minimized and the overall QoS utility 
value must be maximized while satisfying all constraints 
(Eqs. (7-10)). We thus propose an energy- and QoS-aware 
VM placement approach based on an improved PSO to 
solve the optimization problem to find the best VM 
placement operator with a tradeoff between energy con-
sumption and global QoS guarantee. 

4 PROPOSED VM PLACEMENT APPROACH 

PSO [21] is a random search algorithm based on 
swarm intelligence. It shares many similarities with evo-
lutionary computation techniques, and is easy to imple-
ment as there are few parameters to adjust. Moreover, 
compared with similar optimization algorithms, PSO al-
gorithms have such advantages as faster execution and 
higher efficiency of problem solving [22,23]. At present, 
PSO has been successfully applied to many areas, such as 
function optimization, artificial neural network training, 
and fuzzy systems control. PSO is a computational meth-
od that optimizes a problem by iteratively trying to im-
prove a candidate solution with regard to a given meas-
ure of quality. Thus, we attempt to use it to solve the 
energy- and QoS-aware VM placement optimization 
problem.  

4.1 Particle Swarm Optimization 

Each member of the swarm in PSO is called a particle, 
and represents a feasible solution of the search problem 
in question. Each particle has two parameters: velocity 
and position. The position of each particle is associated 
with a fitness value, which is often used to evaluate the 
quality of the solution. PSO begins by initializing a group 
of random particles, and iteratively finds the optimal so-
lution. It imitates the interactive behavior of a foraging 
flock of birds. Each particle flies in the multi-dimension 
search space at a specified velocity while referring to the 



6 IEEE TRANSACTIONS ON CLOUD COMPUTING,  MANUSCRIPT ID 

 

best local position 
,lbest iX  and the best global position

gX , 

and updates its velocity and position to move the swarm 
toward the best solutions as follows: 

1

1 1 , 2 2( ( ) ) ( ( ) )t t t t

i i lbest i i gbest iV V c r X t X c r X t X      ，
 
(11) 

1 1t t t

i i iX X V   ，                                (12) 

where t

iV  and 1t

iV   are the velocity before the update 

and the updated velocity, respectively, and t

iX  and 1t

iX   

are the position before the update and the updated posi-
tion, respectively.   is called the inertial weight coeffi-
cient, and balances the local and global search capabili-
ties of particles, and linearly decreases from 0.9 to 0.4 
through the search process. 1c  and 2c are positive con-

stants, called cognitive learning factors, which enable the 
particle to learn, and 1r  and 2r  are random functions in 

the range [0,1]. 
To be applied to the energy- and QoS-aware VM 

placement problem, PSO must be improved as follows: 1) 
a traditional PSO is suitable only for solving a continuous 
optimization problem, and is unsuited to solving discrete 
optimization problems [20], which means that the pa-
rameters and operators of PSO must be redefined. 2) To 
apply PSO to solve the problem at hand, a new position 
update strategy and coding scheme must be designed. 
Thus, in this paper, we adopt the improved PSO as the 
key to solving the energy- and QoS-aware VM placement 
optimization problem. 

4.2 Improved PSO 

Based on our past work [20,24], our improvement for 
PSO focuses on 1) redefining the parameters and opera-
tors of PSO to solve the discrete optimization problem, 
i.e., the energy- and QoS-aware VM placement optimiza-
tion problem, and 2) adopting a local fitness-first strategy 
to update particle position.  

4.2.1 Redefining PSO 

Traditional PSO is suitable only for solving continuous 
optimization problems, and fails to solve the energy- and 
QoS-aware VM placement optimization. Thus, we rede-
fine the parameters and operators of PSO to solve a dis-
crete optimization problem. Combined with the specific 
characteristics of the energy- and QoS-aware VM place-
ment optimization problem, the parameters and opera-
tors of the PSO can be redefined by the following defini-
tions. 

Definition 2 (Particle Position). Particle position 

1 2( , , ... , )t t t t

i i i inX x x x  is redefined as an n -bit vector that 

represents a feasible VM placement solution, where n  is 
the length of the particle code, and is equal to the num-
ber of servers in a NCDC. 

Definition 3 (Particle Velocity). Particle velocity 

1 2( , , ... , )t t t t

i i i inV v v v  is redefined as an n -bit vector, and 

represents the adjustment decision of VM placement. t

iV  

guides the particle position update operation to drive 
VM placement to adjust for the optimal solution. The 

value of every bit in the vector t

iV  is 0 or 1. It is 0 if the 

corresponding server and its VM are re-evaluated and 
adjusted, and is 1 otherwise. 

Definition 4 (Subtraction Operator). We call   the 
subtraction operator redefined to calculate the differ-
ence between two VM placement solutions. As far as 

t t

i kX X is concerned, if the value of the corresponding 

bit of the solution t

iX  is equal to that of solution t

kX , the 

value of the corresponding bit in the result is 1; other-
wise, the value is 0. For example, (1, 1, 1) (1, 0, 0)= (1, 
0, 0). 
Definition 5 (Addition Operator). We use   to represent 
an addition operator redefined to represent the particle 
velocity update operation because of its own inertial ve-
locity, best position, and global best position during par-

ticle updates. Then, 
1 1 2 2

t t t

n nPV PV PV  states that a 

particle updates its velocity by using 
1

tV  with probability

1P , …, and t

nV  with probability nP . We call the probabil-

ity iP (
1

1
n

i

i

P


 ) the inertial weight coefficient. For exam-

ple, 0.3(0, 0, 1, 1) 0.7(0, 1, 0, 1) = (0, #,#, 1). The prob-
ability that the value of the second bit is 0 is 0.3, and the 
probability that the value is 1 is 0.7. Here, the value of # 
is uncertain, and the bit value is called an uncertain bit 
value. The uncertain bit value affects the update of parti-
cle velocity. In the improved PSO, there are three inertial 
weight coefficients, 1iP , 2iP , 3iP , which are random func-

tions in the range [0,1]. 
Definition 6 (Multiplication Operator). We call   the 

multiplication operator redefined to update particle posi-

tion. 1t t

i kX V   represents the position update operation 

of particle position vector t

iX at any given time based on 

velocity vector 1t

kV  . The computation rule of   is as 

follows: 1) if the bit value of the velocity vector is 1, the 
corresponding bit of the position vector is not adjusted; 
2) if the bit value of the velocity vector is 0, it is adjusted. 
For example, (1, 0, 1, 0) (1, 1, 0,0), where (1, 0, 1, 0) is 
the position vector and (1, 1, 0,0) is the velocity vector. 
The third and fourth bit values of the velocity vector are 
all 0, which indicates that the status of the third and 
fourth server in the corresponding virtual machine 
placement solution should be updated.  

Finally, based on the above five definitions, we im-
prove PSO by transforming Eqs. (11-12) to Eqs. (17-18), 
as follows: 

1

1 2 3( ( ) ) ( ( ) ),t t t t

i i i i lbest i i i gbest iV p V p X t X p X t X     ，   (17) 
1 1.t t t

i i iX X V                                 (18) 
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4.2.2 Local Fitness-first Strategy 

Particle position update usually adopts a random se-
lection strategy. However, the random selection strategy 
affects the overall convergence of PSO, which reduces 
the effectiveness of our approach. Hence, to enhance the 
quality of the solution, we propose a local fitness-first 
strategy to update particle position. 

For ease of presentation, every bit in the first dimen-
sion of the particle is called the local position. The CPU 
utilization of all VMs running on this server in an optimi-
zation period 1 2[ , ]t t  is called local energy fitness, which 

is expressed as follows: 
2

1
, 1

2 1

1
= ( ( )) ,

-

t me

lbest i ijjt
f u t dt

t t 
                          (19) 

where ( )iju t  is the CPU utilization of the i-th VM running 

on the j-th server, and m  is the total number of virtual 
machines running on the j-th server . 

The QoS aggregation of all VMs running on the server 
is called local QoS fitness, and is represented as follows: 

j,k

,

1 j,k j,k

( )
= ,

maxr
k iq

lbest i max min
k

Q q s
f

Q Q




               (20) 

where ( )k iq s  is the k-th QoS attribute value of the i-th 

VM running on the j-th server, r  is the total number of 

QoS attributes, j,

max

kQ  is the maximum value of the -thk

attribute in the j-th server, and ,

min

j kQ is its minimum value. 

Based on Eqs. (19) and (20), local fitness can be de-
termined by the following: 

, , ,= + / ,e q

lbest i lbest i lbest if f f r                       (21) 

For the local fitness-first strategy, when PSO needs to 
update a certain local position, the VM on the server 
with the maximum fitness is selected to fill the local posi-
tion with a larger probability. Local fitness represents the 
CPU utilization and QoS aggregation of the server, and 
these are related to the energy consumption of the serv-
er and the QoS guarantee of the service running on the 
VM. 

4.2.3Encoding Scheme 

To improve the efficiency of the solutions, as shown in 
Fig. 1, we devise a 2D encoding scheme based on the 
character (a one-to-many mapping relationship between 
the server and the VM) of the energy-aware VM place-
ment optimization problem. Where n denotes the num-
ber of servers, and m denotes the number of virtual ma-
chines placed on the same server. 

As shown in Fig. 1, the First Dimension of a particle is 
a n-bit binary vector. Every bit in the vector is associated 
with a server in a NCDC. Here, “1” denotes that the cor-
responding server is active in the current VM placement 
solution, and “0” denotes otherwise. The Second Dimen-
sion of a particle is a set of subsets that comprises the 
VMs to be placed. Then each VM subset is associated 

with an active server. For example, the first bit value of 
the First Dimension of this particle is equal to 1, which 
means that the first server in the NCDC should be turned 
on. The first, second VM should be placed onto the first 
server. Compared with traditional one-dimension particle 
encoding, our designed two-dimension encoding scheme 
not only can effectively shorten the particle encoding 
length to reduce the search time but also can reflect the 
character of the VM static placement optimization prob-
lem. Hence, the encoding scheme is conducive to main-
taining the current feasible solution and improving the 
convergence speed of the PSO. 

1 10

ps1 ps2 psn

1

2

3

7Virtual Machines

...

psj

m

Servers

...

First Dimension 

Second Dimension 

 
Fig. 1. Two-dimensional encoding scheme. 

5 SIMULATION EVALUATION 

To evaluate the performance of our proposed ap-
proach, we compared it with other approaches in terms 
of energy consumption and the global QoS guarantee. 
Moreover, we studied some parameters of our proposed 
approach. 

5.1Simulation Setup 

Since the target system is a NCDC environment, it is 
extremely difficult to conduct repeatable, large-scale 
experiments on a real national infrastructure, which is 
required to evaluate and compare the proposed energy-
and QoS-aware VM placement approach with other 
methods. Hence, to ensure the repeatability of experi-
ments, we chose simulations as an alternative to evalu-
ate the performance of our approach.  

CloudSim [25] is a modern simulation framework 
aimed at cloud computing environments, and supports 
the modeling of virtual resource allocation, energy con-
sumption,  service scheduling, and other functions. Our 
past work [26,27] extended CloudSim as FTCloudSim5 by 
adding some modules to support more extensive exper-
iments, such as fat-tree data center network construc-
tion, failure and repair event triggering, checkpoint im-
age generation and storage, checkpoint-based service 
recovery, and so on. Apart from the above modules, the 
ability to simulate service applications with QoS guaran-
tee was incorporated to support our experiments here by 
adding a QoS module to FTCloudSim. 
 

5 http://youtu.be/yMyz2gesywA 
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We simulated a NCDC of 1,000 heterogeneous physi-
cal servers. To reflect the heterogeneity of the NCDC, 
these servers were divided into two categories, i.e., HP 
ProLiant G4 with CPU (3720MIPS), memory (4GB), and 
peak energy consumption (117 Watts), and HP ProLiant 
G5 with CPU (5320 MIPS), memory (4GB), and peak en-
ergy consumption (135Watts). The servers had different 
configurations and energy consumption characteristics 
[28]. Each physical server runs an one or more data-
intensive services/applications with four QoS attributes 
(i.e., Response Time, Availability, Throughput, Reliability) 
generated by 2,500 real Web services [29-31], i.e., the 
QWS dataset6, where the response time represented a 
QoS constraint attribute. 

Moreover, to better reflect actual VM requests, we 
simulated two types of resource request parameters of 
Amazon EC2 instances, i.e., Micro Instance with CPU 
(500MIPS) and memory (613MB), and Small Instance 
with CPU (1000MIPS) and memory (1700MB).  

We compared this approach with the modified best fit 
decreasing (MBFD) approach proposed in [16], the first-
fit algorithm (FF), and the best-fit algorithm (BF). FF and 
BF are straightforward greedy approximation algorithms. 
With First Fit, the servers are indexed in increasing order 
of remaining capacity. Each virtual machine is sequential-
ly placed on the lowest indexed server onto which it will 
fit. With the Best Fit algorithm, each virtual machine is 
placed onto the server with smallest energy consump-
tion that can host it. All experiments were conducted on 
the same computer running FTCloudSim. A sufficient 
number of repetition tests were executed to set the fol-
lowing parameters: the parameter of the server energy 
model c was set to 0.6, the initial population of the PSO 
was set to 20, and the maximum number of iterations 
was set to 30.  Each experiment was run 10 times. 

5.2Comparison of Energy Consumption 

In this paper, we consider the energy consumption as 
the total energy consumption of all active servers. As 
shown in Fig. 2, we provided the comparison results. 

Fig. 2 shows that our proposed approach enabled the 
data center operators to save more energy than other 
approaches, regardless of the number of virtual machine 
requests. Compared with the other two approaches, our 
approach saved approximately 35% more on energy. This 
is because the FF, BF, and MBFD lack global information 
(i.e., the energy consumption characteristics of hetero-
geneous servers in a NCDC), only account for multi-
dimensional resource constraints, and do not consider 
the energy difference among different servers in the 
problem-solving process. However, our approach intro-
duces an effective particle velocity and position update 
mechanism, which enables it to find a better virtual ma-
 

6http://www.uoguelph.ca/~qmahmoud/qws/ 

chine placement solution and enhances the convergence 
of the algorithm, thus improving the quality of the solu-
tion. As a result, our approach activates the smallest 
number of servers possible, and reduces the total energy 
consumption in a NCDC.  

 
Fig. 2. Total energy consumption in terms of the num-
ber of virtual machine requests. Compared with other 
approaches, our approach saved approximately 35% 
more on energy. 

5.3 Comparison of Global QoS Guarantee 

 
Fig. 3. Global QoS guarantee with respect to the num-
ber of virtual machine requests. Compared with other 
approaches, our approach significantly satisfied the 
global QoS guarantee for data-intensive services in a 
NCDC. 

In this experiment, we evaluated the global QoS guar-
antee obtained by comparison with the results of all ap-
proaches. The number of virtual machine requests was in 
the range [1000, 2000] with four QoS attribute requests. 
Because the four QoS attributes had different units or 
scopes, we designed a QoS utility function to map the 
vector of QoS values into a single real value. The QoS 
utility function scaled all attributes values to the domain 
[0, 1] for uniform computations on multi-dimensional 
QoS attributes depending on the servers, as shown in 
Definition 1. Hence, the global QoS guarantee ranged 
from 0 to 4. 
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Fig. 3 shows the results of a comparison of the global 
QoS guarantee. The global QoS guarantee of our ap-
proach was 2.72 on average, higher than those of other 
approaches. Our approach thus significantly satisfied the 
global QoS guarantee for data-intensive services in a 
NCDC. This is because other approaches focused on local 
QoS optimality. However, local QoS optimality cannot 
satisfy the global QoS guarantee of all data-intensive ser-
vices. Hence, our approach exhibited outstanding per-
formance (lowest energy consumption and highest global 
QoS guarantee) for data-intensive services in a NCDC. 

5.4 Study of Parameters 

In this section, we study the effect of the parameters 
of our proposed approach on energy consumption, glob-
al QoS guarantee, and computation time. As shown in 
Figs. 4-7, the parameters were the server energy param-
eter c, the number of virtual machines, the number of 
QoS constraints, and the weight of QoS w. In our experi-
ments, the number of QoS attributes was four, and the 
number of virtual machines was 1,000. The number of 
heterogeneous physical servers was 1,500. 

5.4.1 Effect of the Server Energy Parameter c 

 

Fig. 4. Effect of parameter c. The parameter represents 
the fraction of energy consumed by the server when idle. 
The lower the energy consumption of our approach, the 
lower the parameter c. The global QoS guarantee of our 
approach was not substantially affected by c. 

Fig. 4 (a) and (b) show the effect of c on our virtual 
machine placement approach. To clearly show its impact, 
we varied the value of c from 0.1 to 0.9 with a step value 
of 0.1. The number of QoS constraints was 1, and we set 
w=0.8 in the experiment. The figure shows the following: 
(1) energy consumption significantly increased when the 
value of c increased from 0.1 to 0.9. This observation 
indicates that the lower the energy consumption of our 
approach, the lower the value of c, i.e., the more idle the 
server; (2) the global QoS guarantee was not substantial-

ly influenced by the value of the parameter c. 

5.4.2 Effect of the Number of QoS Constraints 

 
Fig. 5. Effect of the number of QoS constraints. The 
number of QoS constraints represents users' QoS re-
quirements for data-intensive services in a NCDC. The 
global QoS guarantee and energy consumption of our 
approach were not substantially affected by this parame-
ter. 

 
Fig. 6. Effect of parameter w. w represents the weight 
of each QoS attribute. The energy consumption of our 
approach was not substantially affected by w. The global 
QoS guarantee significantly increased when the value of 
w increased from 0.6 to 0.9. 

Fig. 5 (a) and (b) show the effect of the number of QoS 
constraints on our virtual machine placement approach. 
To clearly show its impact, we varied the number of QoS 
constraints from one to four with a step value of 1. We 
set c=0.6 in the experiment. The weight of response time 
is set as 0.8. The weights of other attributes are random-
ly generated between 0 and 0.2. The sum of the weights 
is1. The figure shows that the global QoS guarantee and 
energy consumption of our approach were not substan-
tially affected by the number of QoS constraints. 

javascript:void(0);
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5.4.3 Effect of the parameter w 

Fig. 6 (a) and (b) show the effect of parameter w on 
our virtual machine placement approach. To clearly show 
its impact, we varied the value of w from 0.1 to 0.9 with 
a step value of 0.1. The number of QoS constraints was 
one, and we set c=0.6 in the experiment. The figure 
shows the following: (1) the global QoS guarantee signifi-
cantly increased when the value of w increased from 0.6 
to 0.9. This observation indicates that the better the 
global QoS guarantee of our approach, the higher the 
value of parameter w; (2) energy consumption was not 
substantially influenced by the value of w; (3) our ap-
proach exhibited its best performance for values of win 
the interval [0.7, 0.9]. 

5.4.4 Effect of the Number of Virtual Machines 

 
Fig. 7. Computation time of our proposed placement ap-
proach. The figure shows that the computation time of 
our approach was an approximately linear relationship 
between the numbers of virtual machine requests and 
computation time. The computation time of our ap-
proach was very short. 

Fig. 7 shows the effect of the number virtual machine 
requests on our virtual machine placement approach. To 
show its impact clearly, we varied the number of virtual 
machine requests from 1,000 to 2,000 with a step value 
of 100. The number of QoS constraints was one, and we 
set c=0.6 and w=0.8 in the experiment. The figure shows 
that the computation time increased slowly when the 
number of virtual machine requests increased. This ob-
servation indicates that the computation time of our 
proposed placement approach was an approximately 
linear relationship between the number of virtual ma-
chine requests and the time cost. This means that our 
placement approach attained satisfactory scalability with 
an approximate optimal solution of the virtual machine 
placement problem. Fig. 7 shows that the computation 
time increased slowly when the number of virtual ma-
chine requests increased. This observation indicates that 
the computation time of our proposed placement ap-
proach was an approximately linear relationship between 
the number of virtual machine requests and the time 
cost. This means that our placement approach attained 
satisfactory scalability with an approximate optimal solu-

tion of the virtual machine placement problem.  

6 CONCLUSIONS 

With an increasing amount of international, large-
scale scientific research incorporating data-intensive ser-
vices in their procedures, energy consumption with the 
global QoS guarantee becomes a crucial issue for VM 
placement in NCDCs. In contrast to past work in the area, 
we proposed in this paper an energy- and QoS-aware VM 
placement optimization approach by eliminating the as-
sumption of server homogeneity, adding the global QoS 
guarantee, and considering the VM placement optimiza-
tion problem with a tradeoff between energy consump-
tion and the global QoS guarantee in NCDCs. To effective-
ly solve the VM placement optimization problem, we 
improved PSO by redefining its parameters and operators, 
and adopted a local fitness-first strategy to update parti-
cle position. Following this, based on a novel 2D particle 
encoding scheme, we used the improved PSO to find the 
optimal virtual machine placement with a tradeoff be-
tween energy consumption and the global QoS guaran-
tee. Experimental results showed that our proposed ap-
proach can reduce energy consumption while satisfying 
the global QoS guarantee.  

Our proposed energy-aware virtual machine place-
ment is in a tree-like datacenter network, which is 
adopted by the commercialized data center. When a dat-
acenter adopts other topologies, the work cannot save 
too much energy. Moreover, the service that is hosted in 
the virtual machines is single service. When the virtual 
machines host a composited service, our placement ap-
proach is not suitable. Hence, our future work in the area 
will focus on solving the limitations of our approach, 
such as improving support for composite services hosted 
in virtual machines, and supporting other topologies in 
NCDCs. 
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